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UNIT II 
 

Disjoint Sets: Disjoint set operations, union and find algorithms 

 
Backtracking: General method, applications, n-queen’s problem, sum of subsets 
problem, graph coloring 

 
 

PART - I – DISJOINT SETS 
 

 

 

Efficient non recursive tree traversal algorithms 

in-order: (left, root, right) 
3,5,6,7,10,12,13 

15, 16, 18, 20, 23 

 
pre-order: (root, left, right) 

15, 5, 3, 12, 10, 6, 7, 

13, 16, 20, 18, 23 

 

post-order: (left, right, root) 

3, 7, 6, 10, 13, 12, 5, 

18,23,20,16,65 

 

 
Non recursive Inorder traversal algorithm 

 

1. Start fiom the root. let's it is current. 

2. Ifcurrent is not NULL. push the node on to stack. 

3. Move to left child of current and go to step 2. 

4. Ifcurrent is NULL, and stack is not empty, pop node from the stack. 

5. Print the node value and change current to right child of current. 

6. Go to step 2. 

 
So we go on traversing all left node. as we visit the node. we will put that node into 

stack remember need to visit parent after the child and as We will encounter parent first 

when start from root. it's case for LIFO :) and hence the stack). Once we reach NULL 
node. we will take the node at the top of the stack. last node which we visited. Print it. 

Check if there is right child to that node. If yes, move right child to stack and again start 
traversing left child node and put them on to stack. Once we have traversed all node. our 
stack will be empty. 

 

Non recursive postorder traversal algorithm 

Left node. right node and last parent node. 

1.1 Create an empty stack 

 Do Following while root is not NULL 

a) Push root's right child and then root to stack. 
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S1= {1, 7, 8, 9} 
S2= {2, 5, 10} 
S3= {3, 4, 6} 

b) Set root as root's left child. 

 Pop an item from stack and set it as root. 

a)        If the popped item has a right child and the right child is at top of stack, 
then remove the right child from stack, push the root back and set root as root's 
right child. 

Ia) Else print root's data and set root as NULL. 

 Repeat steps 2.1 and 2.2 while stack is not empty. 

Disjoint Sets: If Si and Sj, i≠j are two sets, then there is no element that is in both Si and 

Sj.. 
For example: n=10 elements can be partitioned into three disjoint sets, 

 

 

 

 

Tree representation of sets: 
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DISJOINT SET OPERATIONS: 
 

Disjoint set Union 
Find(i) 

 
DISJOINT SET UNION: Means Combination of two disjoint sets elements. Form above 

example S1 U S2 ={1,7,8,9,5,2,10 } 
For S1 U S2 tree representation, simply make one of the tree is a 
subtree of the other. 

 
 

 1     1  

   
5 
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 S1US2    S2US1 

 
Find: Given element i, find the set containing i. 

Form above example: 
Find(4) S3 

Find(1) S1 

Find(10) S2 



Department of CSE                                                                                                                                 Page 3 of 15  

 

 
 

Data representation of sets: 

 

Tress can be accomplished easily if, with each set name, we keep a pointer to the 
root of the tree representing that set. 

 

 
For presenting the union and find algorithms, we ignore the set names and identify sets 
just by the roots of the trees representing them. 

For example: if we determine that element ‘i’ is in a tree with root ‘j’ has a pointer to 
entry ‘k’ in the set name table, then the set name is just name[k] 

 
For unite (adding or combine) to a particular set we use FindPointer function. Example: 
If you wish to unite to Si and Sj then we wish to unite the tree with roots 

FindPointer (Si) and FindPointer (Sj) 
FindPointer is a function that takes a set name and determines the root of the tree that 

represents it. 

For determining operations: 
Find(i) 1St determine the root of the tree and find its pointer to entry in setname 
table. 
Union(i, j) Means union of two trees whose roots are i and j. 

If set contains numbers 1 through n, we represents tree node P[1:n]. 
n Maximum number of elements. 

Each node represent in array 
i 1 2 3 4 5 6 7 8 9 10 

P -1 5 -1 3 -1 3 1 1 1 5 

1 1 

1 

1 1 1 
1 1 1 

1 

1 
1 1 1 
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Find(i) by following the indices, starting at i until we reach a node with parent value -1. 
Example: Find(6) start at 6 and then moves to 6’s parent. Since P[3] is negative, we 
reached the root. 

 

Algorithm for finding Union(i, 

j): 

 
Algorithm for find(i) 

Algorithm Simple union(i, j) Algorithm SimpleFind(i) 
{ { 

P[i]:=j; // Accomplishes the 
union 

 
While(P[i]≥0) do i:=P[i]; 

} return i; 
 } 

 

If n numbers of roots are there then the above algorithms are not useful for union and find. 

For union of n trees Union(1,2), Union(2,3), Union(3,4),…..Union(n-1,n). 
For Find i in n trees Find(1), Find(2),….Find(n). 
Time taken for the union (simple union) is O(1) (constant). 

For the n-1 unions O(n). 
 

Time taken for the find for an element at level i of a tree → O(i). 

is For n finds → O(n2). 

 

To improve the performance of our union and find algorithms by avoiding the creation of 
degenerate trees. For this we use a weighting rule for union(i, j) 

 

Weighting rule for Union(i, j):  
If the number of nodes in the tree with root ‘i’ is less than 
the tree with root ‘j’, then make ‘j’ the parent of ‘i’; 
otherwise make ‘i’ the parent of ‘j’. 
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Algorithm for weightedUnion(i, j) 

Algorithm WeightedUnion(i,j) 

//Union sets with roots i and j, i≠j 

// The weighting rule, p[i]= -count[i] and p[j]= -count[j]. 

{ 

temp := p[i]+p[j]; if (p[i]>p[j]) then 

{ // i has fewer nodes. P[i]:=j; P[j]:=temp; 

} 

else 

{ // j has fewer or equal nodes. P[j] := i; 

P[i] := temp; 

} 

} 

 
For implementing the weighting rule, we need to know how many nodes there are 
in every tree. 

For this we maintain a count field in the root of every tree. 
i root node 
count[i] number of nodes in the tree. 
Time required for this above algorithm is O(1) + time for remaining unchanged is 
determined by using Lemma. 

 

Lemma:-Let T be a tree with m nodes created as a result of a sequence of unions each 

performed using WeightedUnion. The height of T is no greater than |log2 m|+1. 

 

Collapsing rule: If ‘j’ is a node on the path from ‘i’ to its root and p[i]≠root[i], then 
set p[j] to root[i]. 

 
 

 

 

Collapsing find algorithm is used to perform find operation on the tree created by 
WeightedUnion. 

 

For example: Tree created by using WeightedUnion 

Algorithm CollapsingFind(i) 

//Find the root of the tree containing element i. 

//collapsing rule to collapse all nodes form i to the root. 

{ 

r;=i; 

while(p[r]>0) do r := p[r]; //Find the root. 

While(i ≠ r) do // Collapse nodes from i to root r. 

{ 

s:=p[i]; 

p[i]:=r; 

i:=s; 

} 

return r; 

} 

Algorithm for Collapsing find. 
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Now process the following eight finds: Find(8), Find(8),… ........ Find(8) 

If SimpleFind is used, each Find(8) requires going up three parent link fields for a total of 24 
moves to process all eight finds. 

When CollapsingFind is used the first Find(8) requires going up three links and then 
resetting two links. Total 13 movies requires for process all eight finds. 
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PART – II - BACKTRACKING 
 

GENERAL METHOD: 

Many problems are difficult to solve algorithmically. Backtracking makes it possible 
to solve at least some large instances of difficult combinatorial problems. 

Suppose you have to make a series of decisions among various choices, where 
You don’t have enough information to know what to choose 
Each decision leads to a new set of choices. 

Some sequence of choices ( more than one choices) may be a solution to your 
problem. 

 

Backtracking is a methodical (Logical) way of trying out various sequences of decisions, 
until you find one that “works” 

Example@1 (net example) : Maze (a tour puzzle) 

 
Given a maze, find a path from start to finish. 

In maze, at each intersection, you have to decide between 3 or fewer choices: 

Go straight 
Go left 
Go right 

You don’t have enough information to choose correctly 

Each choice leads to another set of choices. 

One or more sequences of choices may or may not lead to a solution. 

Many types of maze problem can be solved with backtracking. 

 
Example@ 2 (text book): 

Sorting the array of integers in a[1:n] is a problem whose solution is expressible by an 
n-tuple xi    is the index in ‘a’ of the ith smallest element. 

The criterion function ‘P’ is the inequality a[xi]≤ a[xi+1] for 1≤ i ≤ n Si is finite and 
includes the integers 1 through n. mi size of set S i 
m=m1m2m3---mn  n tuples that possible candidates for satisfying the function P. 
With brute force approach would be to form all these n-tuples, evaluate (judge) each one with 
P and save those which yield the optimum. 

By using backtrack algorithm; yield the same answer with far fewer than ‘m’ trails. Many of 
the problems we solve using backtracking requires that all the solutions satisfy a complex set 
of constraints. 

For any problem these constraints can be divided into two categories: 

 
Explicit constraints. 

Implicit constraints. 

Explicit constraints: Explicit constraints are rules that restrict each xi to take on values only 
from a given set. 
Example: xi ≥ 0 or si={all non negative real numbers} 
Xi=0 or 1 or Si={0, 1} 
li ≤ xi ≤ ui or si={a: li ≤ a ≤ ui } 

The explicit constraint depends on the particular instance I of the problem being 

solved. All tuples that satisfy the explicit constraints define a possible solution space for I. 
Implicit Constraints: 
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The implicit constraints are rules that determine which of the tuples in the solution 
space of I satisfy the criterion function. Thus implicit constraints describe the way in which 
the Xi must relate to each other. 
APPLICATIONS OF BACKTRACKING: 

N Queens Problem 

Sum of subsets problem 
Graph coloring 

 

N-QUEENS PROBLEM: 

It is a classic combinatorial problem. The eight queen’s puzzle is the problem of 

placing eight queens puzzle is the problem of placing eight queens on an 8×8 chessboard so 
that no two queens attack each other. That is so that no two of them are on the same row, 

column, or diagonal. 

The 8-queens puzzle is an example of the more general n-queens problem of placing n 
queens on an n×n chessboard. 

 

Here queens can also be numbered 1 through 8 

Each queen must be on a different row 

Assume queen ‘i’ is to be placed on row ‘i’ 
All solutions to the 8-queens problem can therefore be represented a s s-tuples(x1, x2, 

x3—x8) xi the column on which queen ‘i’ is placed 
si {1, 2, 3, 4, 5, 6, 7, 8}, 1 ≤ i ≤8 

Therefore the solution space consists of 88 s-tuples. 
The implicit constraints for this problem are that no two xi’s can be the same column 

and no two queens can be on the same diagonal. 
By these two constraints the size of solution pace reduces from 88 tuples to 8! Tuples. Form 
example si(4,6,8,2,7,1,3,5) 
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In the same way for n-queens are to be placed on an n×n chessboard, the solution space 
consists of all n! Permutations of n-tuples (1,2, --- n). 

 

 
Some solution to the 8-Queens problem 

Algorithm for new queen be placed All solutions to the n·queens problem 

Algorithm Place(k,i) Algorithm NQueens(k, n) 

//Return true if a queen can be placed in 
kth 

 
// its prints all possible placements of n- 

row & ith column queens on an n×n chessboard. 

//Other wise return false { 

{ for i:=1 to n do{ 

for j:=1 to k-1 do if Place(k,i) then 

if(x[j]=i or Abs(x[j]-i)=Abs(j-k))) { 

then return false X[k]:=I; 

return true if(k==n) then write (x[1:n]); 

} else NQueens(k+1, n); 
 } 
 }} 



Department of CSE                                                                                                                                 Page 10 of 15  

 
 

SUM OF SUBSETS PROBLEM: 
Given positive numbers wi 1 ≤ i ≤ n, & m, here sum of subsets problem is finding all 

subsets of wi whose sums are m. 
Definition: Given n distinct +ve numbers (usually called weights), desire (want) to find all 
combinations of these numbers whose sums are m. this is called sum of subsets problem. To 
formulate this problem by using either fixed sized tuples or variable sized tuples. 
Backtracking solution uses the fixed size tuple strategy. 
For example: 

If n=4 (w1, w2, w3, w4)=(11,13,24,7) and m=31. 
Then desired subsets are (11, 13, 7) & (24, 7). 

The two solutions are described by the vectors (1, 2, 4) and (3, 4). 

In general all solution are k-tuples (x1, x2, x3---xk) 1 ≤ k ≤ n, different solutions may have 

different sized tuples. 

Explicit constraints requires xi ∈ {j / j is an integer 1 ≤ j ≤ n } 

Implicit constraints requires: 
No two be the same & that the sum of the corresponding wi’s be m 
i.e., (1, 2, 4) & (1, 4, 2) represents the same. Another constraint is xi<xi+1 1 ≤ i ≤ k 

Wi  weight of item i 



Department of CSE                                                                                                                                 Page 11 of 15  

Recursive backtracking algorithm for sum of subsets problem 

Algorithm SumOfSub(s, k, r) 

{ 

X[k]=1 

If(S+w[k]=m) then write(x[1: ]); // subset found. 

Else if (S+w[k] + w{k+1] ≤ M) 

Then SumOfSub(S+w[k], k+1, r-w[k]); 

if ((S+r - w{k] ≥ M) and (S+w[k+1] ≤M) ) then 

{ 

X[k]=0; 

SumOfSub(S, k+1, r-w[k]); 

} 

} 

M Capacity of bag (subset) 
Xi  the element of the solution vector is either one or zero. 
Xi value depending on whether the weight wi is included or not. 
If Xi=1 then wi is chosen. 
If Xi=0 then wi is not chosen. 

 

 

 

 

 
The above equation specify that x1, x2, x3, --- xk cannot lead to an answer node if this 

condition is not satisfied. 

 

The equation cannot lead to solution. 
 

 



Department of CSE                                                                                                                                 Page 12 of 15  

GRAPH COLORING: 
 

Let G be a undirected graph and ‘m’ be a given +ve integer. The graph coloring 
problem is assigning colors to the vertices of an undirected graph with the restriction that 
no two adjacent vertices are assigned the same color yet only ‘m’ colors are used. 

The optimization version calls for coloring a graph using the minimum number of 
coloring. The decision version, known as K-coloring asks whether a graph is colourable 
using at most k-colors. 

Note that, if ‘d’ is the degree of the given graph then it can be colored with ‘d+1’ 

colors. 

The m- colorability optimization problem asks for the smallest integer ‘m’ for which the 
graph G can be colored. This integer is referred as “Chromatic number” of the graph. 

 

Example 

 

Above graph can be colored with 3 colors 1, 2, & 3. 

The color of each node is indicated next to it. 

3-colors are needed to color this graph and hence this graph’ Chromatic 
Number is 3. 

A graph is said to be planar iff it can be drawn in a plane (flat) in such a way that 
no two edges cross each other. 
M-Colorability decision problem is the 4-color problem for planar graphs. 
Given any map, can the regions be colored in such a way that no two adjacent 
regions have the same color yet only 4-colors are needed? 
To solve this problem, graphs are very useful, because a map can easily be 
transformed into a graph. 
Each region of the map becomes a node, and if two regions are adjacent, then the 
corresponding nodes are joined by an edge. 

 
o Example: 

o     The 

above map requires 4 colors. 

Many years, it was known that 5-colors were required to color this map. 
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After several hundred years, this problem was solved by a group of 

mathematicians with 

the help of a computer. They show that 4-colors are sufficient. 

 
Suppose we represent a graph by its adjacency matrix G[1:n, 1:n] 

 
Ex: 

 
 

Here G[i, j]=1 if (i, j) is an edge of G, and G[i, j]=0 otherwise. 

Colors are represented by the integers 1, 2,---m and the solutions are given by the n-tuple 
(x1, x2,---xn) 
xi Color of node i. 

State Space Tree for 
n=3 nodes 
m=3 colors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1st node coloured in 3-ways 
2nd node coloured in 3-ways 
3rd node coloured in 3-ways 
So we can colour in the graph in 27 possibilities of colouring. 

 

Finding all m-coloring of a graph Getting next color 

Algorithm mColoring(k){ 

// g(1:n, 1:n) boolean adjacency matrix. 

// k index (node) of the next vertex to 

color. 

repeat{ 

nextvalue(k); // assign to x[k] a legal 

color. 

Algorithm NextValue(k){ 

//x[1],x[2],---x[k-1] have been assigned 

integer values in the range [1, m] 

repeat { 

x[k]=(x[k]+1)mod (m+1); //next highest 

color 

if(x[k]=0) then return; // all colors have 
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if(x[k]=0) then return; // no new color 

possible 

if(k=n) then write(x[1: n]; 

else mcoloring(k+1); 

} 

until(false) 

} 

been used. 

for j=1 to n do 

{ 

if ((g[k,j]≠0) and (x[k]=x[j])) 

then break; 

} 

if(j=n+1) then return; //new color found 

} until(false) 

} 

 

Previous paper example: 

 

 

 

 

Adjacency matrix is 
 

k ~ 0 

~ ~ 
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